

Pipe Jacking – General Arrangement

Pipe Jacking is an integrated system linking:

- soils
- jacking shafts
- pipes
- shields
- jacking loads
- engineering

Major Applications

- New sewerage and drainage construction
- Sewer replacement and lining
- Gas and water mains
- Oil pipelines
- Electricity and telecoms cable ducts
- Subways

Pipe Jacking

Pipe Jacking

Microtunnelling

Technical Benefits

- Inherent strength
- Smooth internal finish
- No secondary lining
- Fewer joints
- Watertight
- Inverts for combined systems
- Less settlement
- Minimal surface impact
- Fewer utility diversions

Safety Benefits

- Inherently safer method
- Quicker installation
- Reduced labour input
- Utility strikes minimised
- Public interface reduced
- Reduced confined space man hours

Sustainability: Environmental and socio-economic benefits

- Reduces disruption
- Reduces damage to services
- Maintains highway integrity
- 90% fewer vehicle movements
- Less spoil
- Less quarried material
- Reduced CO₂ emissions
- No secondary lining
- Economic alternative to deep open cut
- Socially acceptable

Open trench vs Pipejacking

Carriageway

Open trench vs Pipejacking

Lorry Movements

) pipeline 00m length	1200mm ID pipeline 4m deep, 100m length		
Aspect	Open trench	Open trench Trenchless		Trenchless	
Excavated width	1400mm 760mm (trench width) (OD of jacking pipe)		2350mm (trench width)	1450mm (OD of jacking pipe)	
Reinstatement width	1700mm	None	2650mm	None	
Excavated volume per metre of pipeline	6.1m³	0.5m³	10.28m³	1.65m³	
Imported stone fill and coated stone per metre of pipeline	11.9 tonnes	None	18.27 tonnes	None	
Number of 20 tonne lorry loads per 100m pipeline (muck away and imported stone)	136	8	220	21	

Carbon Calculator

- Easy to use
- Options:
 - Feasibility
 - As designed
 - As built

Open trench vs Pipejacking

CO₂ Savings – 100 metres

Project Data 4m depth to invert	600mm diameter pipeline 100m length x 4m deep		1200mm diameter pipeline 100m length x 4m deep		
Method	Open cut Pipejacking		Open cut	Pipejacking	
Tonnes CO ₂	66.7 27.1		110.6 69.7		
CO ₂ saving	39.6 tonnes =	59% saving	40.9 tonnes =	37% saving	

Project Data 6m depth to invert	600mm diameter pipeline 100m length x 6m deep		1200mm diameter pipeline 100m length x 6m deep		
Method	Open cut Pipejacking		Open cut	Pipejacking	
Tonnes CO ₂	92.7 30.4		148.1 77.4		
CO ₂ saving	62.3 tonnes =	67% saving	70.7 tonnes =	48% saving	

Open trench vs Pipejacking

CO₂ Savings – 500 metres

Project Data 4m depth to invert	600mm diameter pipeline 500m length x 4m deep		1200mm diameter pipeline 500m length x 4m deep		
Method	Open cut Pipejacking		Open cut	Pipejacking	
Tonnes CO ₂	351.4 113.3		570.6 301.8		
CO ₂ saving	238.1 tonnes :	= 68% saving	268.8 tonnes =	= 47% saving	

Project Data 6m depth to invert	600mm diameter pipeline 500m length x 6m deep		1200mm diameter pipeline 500m length x 6m deep		
Method	Open cut Pipejacking		Open cut	Pipejacking	
Tonnes CO ₂	492.4 124.6		765.5 328.3		
CO ₂ saving	367.8 tonnes :	= 75% saving	437.2 tonnes =	= 57% saving	

Machines are available for pipe jacking in most ground conditions

Backacters

- Backacters
- Open face cutter booms

- Backacters
- Open face cutter booms
- Tunnel boring machine

- Backacters
- Open face cutter booms
- Tunnel boring machine
- Earth pressure balance

- Backacters
- Open face cutter booms
- Tunnel boring machine
- Earth pressure balance
- Pressurised slurry

Microtunnelling

- Fully guided machines
- Controlled from surface
- 1000mm id and below
- Non man entry
- Two options:
 - Pressurised slurry
 - Screw auger

Advantages of Mechanisation

- Significantly safer working
- Efficient
- Hand arm vibration eliminated
- Quicker installation
- Ground support
- Remote control
- Risks mitigated

Drive Lengths and Diameters - HSE Recommendations

EXCAVATION TECHNIQUE	<0.9M	0.9M	1.0M	1.2M	1.35M	1.5M	1.8M	>1.8M
Pipe jack – machine;	Drive length limited only by capacity of jacking system		250m		400m	>500m		
remote operation from surface		entry not ptable	Avoid man entry	250111		400111	>500III	
Pipe jack – machine; operator controlled below ground	١	Not Acceptable		125m	200m	300m	500m	>500m
	Not Acceptable		25m	50m	75m	10	0m	
Pipe jack – hand dig			2 drive lengths		S	1 drive length		
				- arive length		Use minidigger if > 2.1m		

Laser Guidance

- Real-time line and level checks
- Maintains accuracy in difficult ground
- Allows remote operations

Pipe Jacking Pipes

- Concrete jacking pipes: BS EN 1916
- Clay pipes: BS EN 296-7 and BS EN 12899: 2000
- Installation forces are key
- Follow manufacturers recommendations
- Steel pipes: sleeves for pressure mains

Site Investigation

Soil Conditions

Test	Non- Cohesive Soils	Cohesive Soils	Mixed Soils	Fill Material	Rock
Unit weight and moisture content	~	~	V	V	V
Angle of friction	~		V	V	
Particle size distribution	V	V	V	V	
Abrasivity	~	~	V	~	V
Cohesion		~	V	V	
Types and proportions of minerals	~	~	~	V	~
Standard penetration tests	V	V	V	V	
Permeability and nature of ground water flows (seasonal/tidal changes)	V		V	V	V
Toxic/hazardous constituents in the ground/groundwater	V	V	V	V	V
Frequency and physical properties of boulders, cobbles or flints	V	V	~	V	~
Pump down tests	~		~	V	~
Presence of gases				V	V
Compressive strength					V
Rock quality designation (RQD)					V
Core logging (TCR, SCR, FI)					V
Tensile strength					V
Specific energy (excavatability)					V
Slake durability					V
Geological description	~	~	~		V
Plasticity indicees (SL, PL, PI)		~	~		

Research Projects at leading universities

University research programme initiated in 1986 – projects include:

- Laboratory testing of model jacked pipes
- Field testing of performance of pipes
- Finite element analysis of concrete jacking pipes
- Full scale testing of concrete pipes
- Soil conditioning and lubrication materials
- Field testing of soil conditioning and lubrication methods
- Slurry management

Guide to Best Practice

- Soils investigation
- Excavation systems
- Temporary and permanent works
- Jacking lengths and friction forces
- Best installation practice
- Worked examples and checklists

Additional Applications

Box Sections

- Subways
- Roadways

Other uses

- Jacked arches
- Bridge slide foundations

Summary

- Engineering integrity
- Low capital costs
- Low maintenance
- Cost-effective
- Safe installation
- Environmental benefits
- Reduced CO₂ emissions
- Extensively used
- 150mm to 3m diameters
- Long drive lengths
- Engineering performance

Pipe Jacking Association

10 Greycoat Place, London SW1P 1SB

Tel: 0845 070 5201 Email: andrew.marshall@pipejacking.org

Website: www.pipejacking.org